
MATH 429 EXAM - 16/06/2025 (180 MINUTES)

No books, notes, or electronic devices (especially no phones) are permitted during this exam.

You must show your work to receive credit. Justify everything.

Do not unstaple the exam or reorder the pages. All problems must be solved within the
space provided (right after the statement of the problem). If you need to use the extra pages
at the end, then mention this clearly in the aforementioned space, so your grader knows that
they have to also look at the end (they will not check the extra pages unless explicitly told to).

We will provide scratch paper (loose sheets) but do not write solutions on them. Only the
16 pages of the booklet you’re now reading will be graded.

Please do not leave the room during the first and last 30 minutes of the exam.

Please keep your CAMIPRO face up on the table at all times.

Don’t forget to write your name, SCIPER, and sign the exam.

There are 7 problems, worth 100 points in total.
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PROBLEM 1

Consider the 3-dimensional Lie algebra g = Ca⊕ Cb⊕ Cc with Lie bracket defined by

[a, b] = b, [a, c] = c, [b, c] = 0

Show that this Lie algebra is solvable, in two ways:

(a) by considering its derived series g ⊇ [g, g] ⊇ [[g, g], [g, g]] ⊇ . . . (8 points)

Solution. The subspace [g, g] is generated by b and c, which in turn commute. Thus
[[g, g], [g, g]] = 0.

(b) by verifying Cartan’s criterion trg(adxady) = 0 for all x ∈ g, y ∈ [g, g]. (7 points)

Solution. We compute explicitly the adjoint action in the given basis. The relations yield

ada =

0 0 0
0 1 0
0 0 1

 , adb =

 0 0 0
−1 0 0
0 0 0

 , adc =

 0 0 0
0 0 0
−1 0 0

 .

As in the previous point, we observe that [g, g] is generated by b and c. Then we check the
aforementioned Cartan’s criterion. By linearity, it is enough to perform the computation on
basis of g and of [g, g]. A straightforward computation gives

trg(adaadb) = trg(adaadc) = trg(adbadc) = 0.



PROBLEM 2

Consider the irreducible representation sl2 ↷ L(n) with highest weight n ∈ Z≥0, and the
Verma module (below, b denotes the subalgebra of sl2 spanned by E and H)

M(n) = Usl2
⊗
Ub

C

generated by a single vector v = 1⊗ 1 satisfying the relations Ev = 0 and Hv = nv.

(a) Construct an explicit basis of M(n) as an infinite-dimensional vector space, and prove
explicit formulas for the action of the operators E,F,H ∈ sl2 in this basis. (8 points)

Solution. In the following we denote as x ·w the action of Ug on M(n), and we denote as
xy the multiplication in Ug.
Let n− be the subalgebra of sl2 generated by F . Then isomorphism (183) in the Lecture
Notes gives the explicit linear basis (F i · v)i∈N for M(n). The associative algebra Ug acts on
M(n) by left multiplication on the first factor, and the action the operator F is free. Thus

F · (F i · v) = F i+1 · v .

Next, we use the PBW theorem to compute the action of the operators E and H. We have

H · (F i · v) = HF i · v = FHF i−1 · v − 2F i · v .

Proceeding by induction and using the relation H.v = nv we find

(1) H · (F i · v) = (n− 2i)F i · v .

The action of E on the first basis element is by the definition E · v = 0. We work out the
E action on the other basis elements by means of the PBW theorem. Using the relations in
the algebra Ug we have

E · (F i · v) = FEF i−1 · v +HF i−1 · v .

Then we proceed inductively, using the H action (1) and the relation E · v = 0. Eventually
we get

(2) E · (F i · v) =
i−1∑
j=0

(n− 2j)F i−1 · v.

(b) Identify the kernel K(n) of the surjection M(n)↠ L(n). (5 points)

(More specifically, you should prove that K(n) is isomorphic to some representation of sl2
which we have “named” in class, such as an irreducible representation or a Verma module)



Solution 1. The surjection M(n) ↠ L(n) sends the subspace generated by the vectors
v0 = v, v1 = F · v . . . , vn = F n · v onto L(n). Then, the kernel contains the basis elements of
weight less then −n. Recalling (1), such elements are vn+1, vn+2, . . . . Thus

K(n) = Span(vn+1, vn+2, . . . ).

The subspace K(n) inherits a submodule structure because it is the kernel of a module
map. In particular, we see that K(n) is an irreducible, infnite dimensional module cyclically
generated by the highest weight vector vn+1, thus

(3) K(n) ∼= M(−n− 2).

Solution 2. The linear subspace subspace K(n) = Span(vn+1, vn+2, . . . ) is invariant with
respect to the sl2 action worked out in point (a). In fact, it is clearly invariant for the action
of F and H, and from (2) we get

E · (F n+1 · v) =
n∑

j=0

(n− 2j)F nv = 0,

where the last equality follows from the symmetry of the above sum. The sl2 action from
point (a) also tells us that the quotient module M(n)/K(n) is isomorphic to L(n). In
fact, both M(n)/K(n) and L(n) have a linear basis where E acts by rising the weight, F
acts by lowering the weight, and H acts diagonally. Furthermore, we can conclude that
K(n) ∼= M(−n− 2) as in solution 1.

(c) Recall that the character of a representation sl2 ↷ V is the formal sum

χV =
∑
n∈C

tn · dimC

(
weight n subspace of V

)
(note that χV may be a power series if V is infinite dimensional). Calculate χL(n), χM(n) and
χK(n), where K(n) denotes the kernel from part (b). (6 points)

Solution 1. Every weight space of M(n) is one dimensional. Thus

χM(n) = tn + tn−2 + · · · = tn

1− t−2
.

Isomorphism (3) tells us that

χK(n) =
t−n−2

1− t−2
.

Finally we compute the character of the finite dimensional module L(n) as

χL(n) = tn + tn−2 + · · ·+ t−n =
tn

1− t−2
− t−n−2

1− t−2
.

Observe also that the short exact sequence

0 → K(n) → M(n) → L(n) → 0



implies that any two of the characters χL(n), χM(n), χK(n) determine the third one.

Solution 2. The exrcise can be solved also by using Weyl’s character formula. In particular,
the weight lattice of sl2 is just Z ⊂ R, and the root lattice is {±2}. The Weyl group is
isomorphic to S2, and it acts by changing sign. Then, we compute the character of L(n)
by substituting these information in Weyl’s formula, expressed in terms of formal symbols
eweight n = tn. We get

χL(n) =
1

t− t−1

(
tn+1 − t−n−1

)
=

tn − t−n−2

1− t−2
.



PROBLEM 3

(a) We know that SLn(C), SOn(C), Sp2n(C) are complex Lie groups with Lie algebras sln,
on, sp2n, respectively. The latter are simple Lie algebras, so therefore

g = sl20 ⊕ o25

is a semisimple Lie algebra. Construct a complex Lie group with Lie algebra g. (6 points)

Solution. Consider the Lie group G = SL20(C)× SO25(C) of block matrices[
A 0
0 B

]
,

where A ∈ SL20(C) and B ∈ SO25(C). The tangent space of G at the identity Id45×45 can
be computed blockwise. More precisely, a curve through the identity in G has the form

(4)

[
Id20×20+tx 0

0 Id25×25+ty

]
∈ G

for a small real parameter t. Taking the derivative at t = 0 of the matrix (4) respects the
block structure. Thus Lie(G) ∼= sl20 ⊕ o25.

Remark. The solution takes full marks even if just the answer ”G = SL20(C)× SO25(C)”
is stated.

(b) Give an example of two non-isomorphic Lie groups (either real or complex) with isomor-
phic Lie algebras. Justify your assertions. (6 points)

Solution. Both real Lie groups R and S1 have Lie algebra R. However, R is not compact
and S1 is, so they cannot be homeomorphic.

Remark. It is also possible to consider a non-connected Lie group G and a connected
component of G.



PROBLEM 4

Let G be the Lie group of invertible functions R
fa,b−−→ R, fa,b(x) = ax+ b. In other words

G = R∗ × R, fa,b ⇝ (a, b)

with the group operation induced by composition of functions. Write out this operation
explicitly by filling in the blanks below (7 points)

(a, b) · (a′, b′) = (aa′, ab′ + b).

Determine g = Lie(G) and its Lie bracket. (5 points)

(You may express elements of G near the identity 1 ∈ G as g = 1 + εy where y ∈ g and ε
is infinitesimally small. Then by considering gg′g−1 ∈ G for group elements g = 1 + εy and
g′ = 1 + ε′y′, the order εε′ term recovers the Lie bracket [y, y′] ∈ g)

Solution 1. The real Lie group G has dimension 2, so its Lie algebra is isomorphic to R2

as a vector space. The Lie algebra structure of Lie(G) is determined by the bracket of two
generators x = (1, 0) and y = (0, 1). The product structure previously computed tells us
that (1, 0) ∈ G is the identity, and (a, b)−1 =

(
1
a
, −b

a

)
. Then, let ϵ, ϵ′ > 0 and consider two

curves

γx(ϵ) = (1, 0) + ϵx+O(ϵ) = (1 + ϵ, 0) +O(ϵ) , γy(ϵ
′) = (1, 0) + ϵ′y +O(ϵ′) = (1, ϵ′) +O(ϵ′)

in G. Then from Exercise Sheet 1 we can compute

[x, y] =
d

dϵ

∣∣∣
ϵ=0

d

dϵ′

∣∣∣
ϵ′=0

γx(ϵ)γy(ϵ
′)γx(ϵ)

−1 =

d

dϵ

∣∣∣
ϵ=0

d

dϵ′

∣∣∣
ϵ′=0

(1 + ϵ, 0)(1, ϵ′)

(
1

1 + ϵ
, 0

)
=

d

dϵ

∣∣∣
ϵ=0

d

dϵ′

∣∣∣
ϵ′=0

(1, ϵ′(1 + ϵ)) = (0, 1) = y .

Remark 1. We can consider either the commutator ghg−1h−1 or ghg−1 in the solution.

Remark 2. Observe that γx(ϵ)
−1 = γx(−ϵ) + O(ϵ) . Thus it is also possible to set up the

above computation as

[x, y] =
d

dϵ

∣∣∣
ϵ=0

d

dϵ′

∣∣∣
ϵ′=0

γx(ϵ)γy(ϵ
′)γx(−ϵ)

and this gives the same result.

Solution 2. We observe that G is isomorphic to the subgroup of GL2 consisting of 2× 2
matrices of the form [

a b
0 1

]
.



It follows that we can describe the Lie algebra of G as a subalgebra of gl2. In particular
x ∈ Lie(G) is determined by the condition that Id2×2+ϵx ∈ G for ϵ infinitesimally small. It
follows that Lie(G) is made out of matrices of the form[

a b
0 0

]
as a and b vary in R.



PROBLEM 5

(a) What do we mean when we say that a (complex, finite-dimensional) representation V of
a (complex, finite-dimensional) semisimple Lie algebra is completely reducible?

Solution 1. A (complex, finite-dimensional) representation V of a (complex, finite-
dimensional) semisimple Lie algebra is completely reducible if there is an isomorphism of
representations

V ∼= V1 ⊕ · · · ⊕ Vk,

where each Vi, i = 1, . . . , k is an irreducible representation, i.e. it has no nontrivial subrep-
resentation.

Solution 2. A (complex, finite-dimensional) representation V of a (complex, finite-
dimensional) semisimple Lie algebra is completely reducible if any subrepresentation W ⊂ V
has a complement W ′ in V (i.e. a vector subspace W ′ ⊂ V such that V = W ⊕W ′) which
is also a subrepresentation.

(we encountered several, essentially equivalent, formulations of complete reducibility; stating
any one of them in the space above would be acceptable) (7 points)

(b) A (complex, finite-dimensional) Lie algebra g is called reductive if g/z(g) is semisimple.
Prove that the adjoint representation of a reductive Lie algebra g is completely reducible.

(5 points)

Solution 1. The kernel of the adjoint representation

(5) g −→ End(g)

is exactly the center z(g). This means that (5) descends to a faithful representation

(6) g/z(g) ↪→ End(g).

In particular, the map (5) has the same image as (6). We deduce that a gmodule is irreducible
if and only if it is irreducible for g/z(g). We know from point (a) that every representation
of a (complex, finite-dimensional) semisimple Lie algebra is completely reducible, so we are
done.

Solution 2. We use the isomorphism of vector spaces1 g ∼= g/z(g) ⊕ z(g) to write any
element x ∈ g uniquely as a sum

(7) x = x+ z

1Actually Levi’s theorem implies that it is an isomorphism of Lie algebras.



where x is the image of x in g/z(g), and z is in the center. Let W ⊂ g be a g-invariant
subspace with respect to the adjoint action. Then W is also invariant with respect to the
induced action g/z(g) ↷ g. Then we can find a complement W ′ ⊂ g for W which is also
invariant for the action of the semisimple Lie algebra g/z(g). Finally, decomposition (7)
allows us to conclude that W is also a g-subrepresentation.



PROBLEM 6

The following is a picture of the root system of type G2 (the long vectors are
√
3 times bigger

than the short vectors, and the angles between adjacent vectors are all equal).

(a) Draw any half-plane whose boundary line passes through the origin but does not contain
any of the root vectors: the 6 positive roots are those ones which lie in the chosen half plane.

Indicate in the picture the 2 simple roots α1 and α2 corresponding to your choice of half-plane.

Write on the picture the other 4 positive roots as explicit linear combinations of α1 and α2.
(9 points)

(b) Determine, with proof, the Weyl group corresponding to the root system of type G2.
(6 points)

Solution 1. The Weyl group W of G2 is generated by the two simple reflections s1 = sα1

and s2 = sα2 , for any possible choice of simple roots α1, α2. The generator si is the reflection
with respect to the orthogonal line to the vector αi, so in particular it is an isometry. We
deduce that W acts on roots of the same length. Moreover, we can see that the action of
W on the hexagon determined by the shortest (resp. longest) roots is transitive. Thus we
conclude that W is isomorphic to the dihedral group D6.



Solution 2. We work out the Weyl group W by generators and relations2. Possibly after
rescaling, we may identify α1 with (1, 0) ∈ R2, and we write the reflections s1 = sα1 and
s2 = sα2 with respect to the basis ((1, 0), (0, 1)) of R2. We get

s1 =

[
−1 0
0 1

]
and s2 =

[
−1

2

√
3
2√

3
2

1
2

]
.

Then we get s21 = Id2×2 = s22 and the order of s1s2 is 6. Moreover s1(s1s2)s1 = (s1s2)
−1.

Thus we get a homomorphism

⟨r, s⟩/(s2 = 1, r6 = 2, srs = r−1) = D6 → W

by sending r 7→ s1s2, s 7→ s1. Finally, since the Weyl group W acts transitively and faithfully
on Weyl chambers, we see that it has 12 elements, just as D6. This implies that W ∼= D6.

Remark. One could work out the above relations even without writing s1 and s2 in matrix
form. For example, one could consider the action on Weyl chambers.

2Of course the explicit expressions in this solution depend on the choices made in point (a), but they lead
to the same result.



PROBLEM 7

For any semisimple (complex, finite-dimensional) Lie algebra g with root decomposition

g = h
⊕
α∈R

gα

consider the subspace

n+ =
⊕
α∈R+

gα

defined with respect to some decomposition R = R+ ⊔R− into positive and negative roots.

(a) Show that n+ is a Lie subalgebra of g. (9 points)

Solution. The subset n+ is clearly a linear subspace. Moreover, take x ∈ gα and y ∈ gβ
for any positive roots α, β ∈ R+. Then

(8) [x, y] ∈ gα+β ,

where α+ β is again a positive root. Then the fact that the Lie bracket is linear concludes.

(b) Show that n+ is a nilpotent Lie algebra. (6 points)

Solution 1. We use Engel’s theorem. Take x ∈ gα and y ∈ gβ for any positive roots
α, β ∈ R+. Then applying equation (8) n times gives

adn
x(y) ∈ gβ+nα .

Since the Lie algebra g is finite dimensional, the above root space eventually vanishes, so
that adn

x(y) = 0 for n big enough.

Solution 2. We have to check that

n times︷ ︸︸ ︷
[n+, [n+, [. . . , [n+, n+] . . . ]]] = 0

for large n enough. Let x1 ∈ gα1 , . . . , xn ∈ gαn for positive roots α1, . . . , αn ∈ R+. Then equa-
tion (8) implies that the bracket [x1, [x2, . . . , [xn−1, xn] . . . ] lies in the root space gα1+···+αn .
On the other hand, if we choose n big enough, any sum

(9) α1 + · · ·+ αn



of n positive roots does not belong to the root system R. In fact, let N+ be the number of
positive roots. If we choose n = kN+, then at least one root occurs at least k times in the
sum (9). Let the aforementioned root be α1. Thus the sum (9) may be written as

β + kα1

where β ∈ R+. Since the Lie algebra g is finite dimensional, the root space gβ+kα1 vanishes
for k big enough, and for each pair β, α1 of positive roots.

Remark. It is also possible to complete Solution 2 by observing that the coefficients of
the decomposition into a sum of simple roots of

α1 + · · ·+ αj

for α1, . . . , αj ∈ R+ increase with j.


